# Copyright 2022 Allen Synthesis
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from time import ticks_diff, ticks_ms
from random import randint, uniform
from europi_script import EuroPiScript
author: Nik Ansell (github.com/gamecat69)
labels: sequencer, triggers, drums, randomness
Consequencer is a gate and stepped CV sequencer inspired by Grids from Mutable Instruments and the randomness created by the Turing Machine.
Pattern changes and randomness are introduced as a consequence of both manual input and control voltages sent to the analogue input.
A large number of popular gate patterns are pre-loaded. Stepped CV sequences are automatically generated.
March-23 decreased maxRandomPatterns to 32 to avoid crashes on some systems
pattern is now sum of ain and k2
randomness is now sum of ain and k1
added garbage collection to avoid memory allocation errors when creating new random sequences
scroll pattern on display
minor pattern updates and reshuffled the order
Jan-24 reduced number of calls to update screen to improve performance for incoming clocks < 7ms
added grids patterns as an easter egg
added methods to reduce hysteresis on ain - this reduces the number of ain reads too
added methods to reduce hysteresis on k1 and k2 - this reduces the number of knob reads too
added screen saver to improve performance
changed the way the mode is displayed - replaced M1,M2,M3 with Mr,Mp,Mc for easier reading
cleaned up some code comments
added constants for easier code reading
# Operating modes for the internal state machine
# Change detection thresholds to trigger a value change
KNOB_CHANGE_TOLERANCE = 0.999
# AIN Input Mode display chars
MODE_DISPLAY_CHARS = ["r", "p", "c"]
# Wake the screen upon detecting input at ain?
WAKE_SCREEN_ON_AIN_INPUT = False
class Consequencer(EuroPiScript):
self.trigger_duration_ms = 50
self.minAnalogInputVoltage = 0.5
self.reset_timeout = 1000
self.maxRandomPatterns = 32 # This prevents a memory allocation error
self.maxCvVoltage = clamp(europi_config.MAX_OUTPUT_VOLTAGE, 0, 9) # The maximum is 9 to maintain single digits in the voltage list
self.gateVoltage = europi_config.GATE_VOLTAGE
self.gateVoltages = [0, self.gateVoltage]
self.lastInteractionTimeMs = ticks_ms()
self.screenOffTimeoutMs = 10 * 1000
# State flag to determine if UI state has changed and display should update.
# Calculate the longest pattern length to be used when generating random sequences
self.maxStepLength = len(max(self.BD, key=len))
# Generate random CV for cv4-6
self.generateNewRandomCVPattern()
# Triggered when button 2 is released.
# grids patterns easter egg
ticks_diff(ticks_ms(), b2.last_pressed()) > 3000
and ticks_diff(ticks_ms(), b2.last_pressed()) < 5000
self.gridsMode = not self.gridsMode
elif ticks_diff(ticks_ms(), b2.last_pressed()) > 300:
if self.analogInputMode < MODE_CV_PATTERN:
self.analogInputMode += 1
self.analogInputMode = MODE_RANDOM
if self.analogInputMode == MODE_CV_PATTERN: # Allow changed by CV only in mode 3
if self.CvPattern < len(self.random4) - 1: # change to next CV pattern
len(self.random4) < self.maxRandomPatterns
): # We need to try and generate a new CV value
if self.generateNewRandomCVPattern():
self.lastInteractionTimeMs = ticks_ms()
# Triggered when button 1 is released
ticks_diff(ticks_ms(), b1.last_pressed()) > 3000
and ticks_diff(ticks_ms(), b1.last_pressed()) < 5000
self.output4isClock = not self.output4isClock
elif ticks_diff(ticks_ms(), b1.last_pressed()) > 300:
self.random_HH = not self.random_HH
# Play previous CV Pattern, unless we are at the first pattern
self.lastInteractionTimeMs = ticks_ms()
# Triggered on each clock into digital input. Output triggers.
# function timing code. Leave in and activate as needed
self.step_length = len(self.BD[self.pattern])
# A pattern was selected which is shorter than the current step. Set to zero to avoid an error
if self.step >= self.step_length:
cv5.voltage(self.random5[self.CvPattern][self.step])
cv6.voltage(self.random6[self.CvPattern][self.step])
# How much randomness to add to cv1-3
# As the randomness value gets higher, the chance of a randomly selected int being lower gets higher
# The output will only trigger if the randint() is <= than the probability of the step in BdProb, SnProb and HhProb respectively
randomNumber0_99 = randint(0, 99)
randomNumber0_9 = randomNumber0_99 // 10
if randomNumber0_99 < self.randomness:
if randomNumber0_9 <= int(self.BdProb[self.pattern][self.step]):
cv1.voltage(self.gateVoltages[randint(0, 1)])
if randomNumber0_9 <= int(self.SnProb[self.pattern][self.step]):
cv2.voltage(self.gateVoltages[randint(0, 1)])
if randomNumber0_9 <= int(self.HhProb[self.pattern][self.step]):
cv3.voltage(self.gateVoltages[randint(0, 1)])
if randomNumber0_9 <= int(self.BdProb[self.pattern][self.step]):
cv1.voltage(self.gateVoltages[int(self.BD[self.pattern][self.step])])
if randomNumber0_9 <= int(self.SnProb[self.pattern][self.step]):
cv2.voltage(self.gateVoltages[int(self.SN[self.pattern][self.step])])
if randomNumber0_9 <= int(self.HhProb[self.pattern][self.step]):
cv3.voltage(self.gateVoltages[int(self.HH[self.pattern][self.step])])
# Set cv4-6 voltage outputs based on previously generated random pattern
cv4.voltage(self.gateVoltage)
cv4.voltage(self.random4[self.CvPattern][self.step])
# Incremenent the clock step
# function timing code. Leave in and activate as needed
# delta = time.ticks_diff(time.ticks_us(), t)
# print('Function {} Time = {:6.3f}ms'.format('clockTrigger', delta/1000))
# Initialize sequencer pattern arrays
# Initialize sequencer pattern probabiltiies
self.BdProb = p.BdProbGrids
self.SnProb = p.SnProbGrids
self.HhProb = p.HhProbGrids
# Initialize sequencer pattern probabiltiies
# Load and populate probability patterns
# If the probability string len is < pattern len, automatically fill out with the last digit:
# - 952 becomes 952222222
for pi in range(len(self.BD)):
if len(self.BdProb[pi]) < len(self.BD[pi]):
self.BdProb[pi] = self.BdProb[pi] + (
self.BdProb[pi][-1] * (len(self.BD[pi]) - len(self.BdProb[pi]))
for pi in range(len(self.SN)):
if len(self.SnProb[pi]) < len(self.SN[pi]):
self.SnProb[pi] = self.SnProb[pi] + (
self.SnProb[pi][-1] * (len(self.SN[pi]) - len(self.SnProb[pi]))
for pi in range(len(self.HH)):
if len(self.HhProb[pi]) < len(self.HH[pi]):
self.HhProb[pi] = self.HhProb[pi] + (
self.HhProb[pi][-1] * (len(self.HH[pi]) - len(self.HhProb[pi]))
""" Save working vars to a save state file"""
"analogInputMode": self.analogInputMode,
"random_HH": self.random_HH,
"output4isClock": self.output4isClock,
"gridsMode": self.gridsMode,
self.save_state_json(self.state)
""" Load a previously saved state, or initialize working vars, then save"""
self.state = self.load_state_json()
self.analogInputMode = self.state.get("analogInputMode", 1)
self.random_HH = self.state.get("random_HH", False)
self.output4isClock = self.state.get("output4isClock", False)
self.gridsMode = self.state.get("gridsMode", False)
def generateNewRandomCVPattern(self):
self.generateRandomPattern(self.maxStepLength, 0, self.maxCvVoltage)
self.generateRandomPattern(self.maxStepLength, 0, self.maxCvVoltage)
self.generateRandomPattern(self.maxStepLength, 0, self.maxCvVoltage)
# If mode 2 and there is CV on the analogue input use it, if not use the knob position
if self.analogInputMode == MODE_PATTERN and self.ainVal > self.minAnalogInputVoltage:
int((len(self.BD) / 100) * self.ainVal) + self.k2Val, len(self.BD) - 1
self.pattern = self.k2Val
self.step_length = len(self.BD[self.pattern])
if self.pattern_prev != self.pattern:
self.pattern_prev = self.pattern
# If analogue input mode 3, get the CV pattern from CV input
if self.analogInputMode == MODE_CV_PATTERN and self.ainVal > self.minAnalogInputVoltage:
# Convert percentage value to a representative index of the pattern array
self.CvPattern = int((len(self.random4) / 100) * self.ainVal)
if self.CvPattern_prev != self.CvPattern:
self.CvPattern_prev = self.CvPattern
def generateRandomPattern(self, length, min, max):
for i in range(0, length):
self.t.append(uniform(0, 9))
# If mode 1 and there is CV on the analogue input use it, if not use the knob position
if self.analogInputMode == MODE_RANDOM and self.ainVal > self.minAnalogInputVoltage:
self.randomness = min(self.ainVal + self.k1Val, 99)
self.randomness = self.k1Val
if self.randomness_prev != self.randomness:
self.randomness_prev = self.randomness
# Read ain val and update if > threshold
self.ainValTemp = 100 * ain.percent()
if abs(self.ainValTemp - self.ainVal) > AIN_CHANGE_TOLERANCE:
self.ainVal = self.ainValTemp
# Read knob vals and update if > threshold
self.k1ValTemp = k1.read_position()
if abs(self.k1ValTemp - self.k1Val) > KNOB_CHANGE_TOLERANCE:
self.k1Val = self.k1ValTemp
self.lastInteractionTimeMs = ticks_ms()
self.k2ValTemp = k2.read_position(len(self.BD))
if abs(self.k2ValTemp - self.k2Val) > KNOB_CHANGE_TOLERANCE:
self.k2Val = self.k2ValTemp
self.lastInteractionTimeMs = ticks_ms()
# Update screen if updateUI flag has been set
# If I have been running, then stopped for longer than reset_timeout, reset the steps and clock_step to 0
and ticks_diff(ticks_ms(), din.last_triggered()) > self.reset_timeout
# Has the module been left along for a while, turn off the screen
and ticks_diff(ticks_ms(), self.lastInteractionTimeMs) > self.screenOffTimeoutMs
def visualizePattern(self, pattern, prob):
for s in range(len(pattern)):
char = "^" if prob[s] == "9" else "-"
def drawBlankScreen(self):
# oled.clear() - dont use this, it causes the screen to flicker!
# Show selected pattern visually
# Calculate the length of the current pattern
current_pattern_length = len(self.BD[self.pattern])
# Calculate the width of one full pattern in pixels
lpos_offset = current_pattern_length * CHAR_WIDTH
# Calculate the x position of the first pattern to be drawn
normal_lpos = lpos = 8 - (self.step * 8)
# Calculate the number of patterns required to fill the OLED width
number_of_offset_patterns = 2 * max(int(OLED_WIDTH / lpos_offset), 1)
# Draw as many offset patterns as required to fill the OLED
for pattern_offset in range(number_of_offset_patterns):
# Draw the current pattern
self.visualizePattern(self.BD[self.pattern], self.BdProb[self.pattern]),
self.visualizePattern(self.SN[self.pattern], self.SnProb[self.pattern]),
self.visualizePattern(self.HH[self.pattern], self.HhProb[self.pattern]),
normal_lpos += lpos_offset
# If the random toggle is on, show a rectangle
oled.fill_rect(0, 29, 10, 3, 1)
# Show self.output4isClock indicator
oled.rect(12, 29, 10, 3, 1)
oled.text("R" + str(int(self.randomness)), 26, 25, 1)
oled.text("C" + str(self.CvPattern), 56, 25, 1)
# Show the analogInputMode
oled.text("M" + str(MODE_DISPLAY_CHARS[self.analogInputMode - 1]), 85, 25, 1)
# Show the pattern number
oled.text(".", 102, 25, 1)
oled.text(str(self.pattern), 110, 25, 1)
# Initialize pattern lists
# Initialize pattern probabilities
# 11 interesting patterns
BD.append("1000100010001000")
SN.append("0000000000000000")
HH.append("0000000000000000")
BD.append("1000100010001000")
SN.append("0000000000000000")
HH.append("0010010010010010")
BD.append("1000100010001000")
SN.append("0000100000000000")
HH.append("0010010010010010")
BD.append("1000100010001000")
SN.append("0000100000001000")
HH.append("0010010010010010")
BD.append("1000100010001000")
SN.append("0000100000000000")
HH.append("0000000000000000")
BD.append("1000100010001000")
SN.append("0000100000001000")
HH.append("0000000000000000")
BD.append("1000100010001000")
SN.append("0000100000001000")
HH.append("0000100010001001")
BD.append("1000100010001000")
SN.append("0000100000001000")
HH.append("1010101010101010")
BD.append("1000100010001000")
SN.append("0000000000000000")
HH.append("1111111111111111")
BD.append("1000100010001000")
SN.append("0000100000001000")
HH.append("1111111111111111")
BD.append("1000100010001000")
SN.append("0000100000000000")
HH.append("0001001000000000")
# 10 commonly found patterns
# Source: https://docs.google.com/spreadsheets/d/19_3BxUMy3uy1Gb0V8Wc-TcG7q16Amfn6e8QVw4-HuD0/edit#gid=0
BD.append("1000000010000000")
SN.append("0000100000001000")
HH.append("1010101010101010")
BD.append("1010001000100100")
SN.append("0000100101011001")
HH.append("0000000100000100")
BD.append("1000000110000010")
SN.append("0000100000001000")
HH.append("1010101110001010")
BD.append("1100000100110000")
SN.append("0000100000001000")
HH.append("1010101010101010")
BD.append("1000000110100000")
SN.append("0000100000001000")
HH.append("0010101010101010")
BD.append("1010000000110001")
SN.append("0000100000001000")
HH.append("1010101010101010")
BD.append("1000000110100001")
SN.append("0000100000001000")
HH.append("0000100010101011")
BD.append("1001001010000000")
SN.append("0000100000001000")
HH.append("0000100000001000")
BD.append("1010001001100000")
SN.append("0000100000001000")
HH.append("1010101010001010")
BD.append("1010000101110001")
SN.append("0000100000001000")
HH.append("1010101010001010")
# 5 interesting patterns?
BD.append("1000100010001000")
SN.append("0000101001001000")
HH.append("1010101010101010")
BD.append("1100000001010000")
SN.append("0000101000001000")
HH.append("0101010101010101")
BD.append("1100000001010000")
SN.append("0000101000001000")
HH.append("1111111111111111")
BD.append("1001001001000100")
SN.append("0001000000010000")
HH.append("0101110010011110")
BD.append("1001001001000100")
SN.append("0001000000010000")
HH.append("1111111111111111")
# 5 Mixed probability patterns
BD.append("10111111111100001011000000110000")
SN.append("10001000100010001010000001001000")
HH.append("10101010101010101010101010101010")
BdProb.append("99992111129999999999999999969999")
HhProb.append("92939495969792939495969792939492")
BD.append("10111111111100001011000000110000")
SN.append("10001000100010001010000001001000")
HH.append("11111111111111111111111111111111")
BdProb.append("99992222229999999999999999999999")
HhProb.append("44449999555599996666999922229999")
BD.append("1000100010001000")
SN.append("0000101001001000")
HH.append("0101010101010101")
BD.append("1000110010001100")
SN.append("0000101001001000")
HH.append("1111111111111111")
BdProb.append("9999939999999299")
HhProb.append("9293949592939495")
BD.append("1000100010001000")
SN.append("0000101000001000")
HH.append("1111111111111111")
SnProb.append("9999995999999999")
HhProb.append("9293949592939495")
BD.append("10110000001100001011000000110000")
SN.append("10001000100010001010100001001010")
HH.append("00001011000010110000101100001011")
BD.append("10101010101010101010101010101010")
SN.append("00001000000010000000100000001001")
HH.append("10100010101000101010001010100000")
BD.append("11000000101000001100000010100000")
SN.append("00001000000010000000100000001010")
HH.append("10111001101110011011100110111001")
BD.append("10001000100010001000100010001010")
SN.append("00100100101100000010010010110010")
HH.append("10101010101010101010101010101011")
BD.append("10010100100101001001010010010100")
SN.append("00100010001000100010001000100010")
HH.append("01010101010101010101010101010101")
# 13 patterns with < 16 steps - can sound disjointed when using CV to select the pattern!
BD.append("10010000010010")
SN.append("00010010000010")
HH.append("11100110111011")
BD.append("1001000001001")
SN.append("0001001000001")
HH.append("1110011011101")
BD.append("100100000100")
SN.append("000100100000")
HH.append("111001101110")
BDGrids.append("10000000000010000000100000000000")
BDGrids.append("10000010000010000000100000000000")
SNGrids.append("00000000100000000010000010000000")
SNGrids.append("00000000100000000010000010001000")
HHGrids.append("00001000000010000000100000001000")
HHGrids.append("10001000101010001000100010001000")
BDGrids.append("10000000100000001000000000000000")
BDGrids.append("10000000100000001000000010001000")
SNGrids.append("00100000100000000000000010000000")
SNGrids.append("00100000100010000010000010000000")
HHGrids.append("00001000000010000000100000001000")
HHGrids.append("10101000101010001000100010001000")
BDGrids.append("10000000000000100000100000000000")
BDGrids.append("10000000000000100010100000001000")
SNGrids.append("00000000101000000000000010000000")
SNGrids.append("00000000101000000000000010000010")
HHGrids.append("10000000000000001000100000001000")
HHGrids.append("10001000000000001010101000001000")
BDGrids.append("10100000000000001000100000000000")
BDGrids.append("10100000001000001000100000100000")
SNGrids.append("00000000101000000000000010000000")
SNGrids.append("00001000101000000000000010001000")
HHGrids.append("10101010000000001000000000001000")
HHGrids.append("10101010100000001000000010001000")
BDGrids.append("10000000000010001000000000000000")
BDGrids.append("10000000000010001000100000000000")
SNGrids.append("00000000100000000000000010101000")
SNGrids.append("00000000100000000000100010101000")
HHGrids.append("00001000000010000000100000000000")
HHGrids.append("00001000100010000000100010001000")
BDGrids.append("10000000000000001010000000000000")
BDGrids.append("10000000000000001010001000100000")
SNGrids.append("00000010100000000000000010000010")
SNGrids.append("10001010100000000000000010000010")
HHGrids.append("00001000000010000000100000001000")
HHGrids.append("10001000000010001000100000001000")
BDGrids.append("10001000000000000000000000001000")
BDGrids.append("10001000000000000000100000001000")
SNGrids.append("00100000100000000010000010000000")
SNGrids.append("00100000100000100010000010100000")
HHGrids.append("10101010100000000000000000000000")
HHGrids.append("10101010100010001000000010000000")
BDGrids.append("10000000000010001000000000001000")
BDGrids.append("10000000000010001000100000001000")
SNGrids.append("00000000100010000000000010001000")
SNGrids.append("00000000100010000000100010001000")
HHGrids.append("10001000100000001000100010000000")
HHGrids.append("10001000100010001000100010000000")
BDGrids.append("10001000000010001000100000000000")
BDGrids.append("10001000000010001000100000001000")
SNGrids.append("00000000100000000000100010001000")
SNGrids.append("10000000100000000000100010001000")
HHGrids.append("10000000000000000000000010101010")
HHGrids.append("10000000000000001000000010101010")
BDGrids.append("10000000000010000000100000100000")
BDGrids.append("10000010000010000000100000101000")
SNGrids.append("00000000100000100000100010000000")
SNGrids.append("00000000100000100000100010000010")
HHGrids.append("00001010000010001000100000001000")
HHGrids.append("00001010100010001000101010001000")
BDGrids.append("00000000000010000010000000001000")
BDGrids.append("10000000000010000010000000001000")
SNGrids.append("00000000001010001000000000000000")
SNGrids.append("00001000101010001000000000000000")
HHGrids.append("10000000100000001000000010001000")
HHGrids.append("10001000100000001000000010001000")
BDGrids.append("10000000000000001000100000100000")
BDGrids.append("10000000000000001000100000100010")
SNGrids.append("00000000100100100000000010000000")
SNGrids.append("00000000100100100000000010001100")
HHGrids.append("00001000000010001000100010001000")
HHGrids.append("10001000100010001000100010001000")
BDGrids.append("10001010000000000000101000000000")
BDGrids.append("10001010000000000000101000001000")
SNGrids.append("00000000100000100000000010000000")
SNGrids.append("00000000100000100010000010000010")
HHGrids.append("10001000100010001000000000000000")
HHGrids.append("10001000100010001000100010001010")
BDGrids.append("10000000100000101000000000000000")
BDGrids.append("10000000100000101000000010000000")
SNGrids.append("00000000100000000000000010100000")
SNGrids.append("00000000100000000000000010101000")
HHGrids.append("10001000100010001000100000000000")
HHGrids.append("10101010100010101000100010001000")
BDGrids.append("10000000000000001000000000000000")
BDGrids.append("10000000000000001000100000000000")
SNGrids.append("00000000100010000000000000001010")
SNGrids.append("00000000100010000000000010001010")
HHGrids.append("10000000000000001000000000000000")
HHGrids.append("10001000000000001000100000000000")
BDGrids.append("10000000000010001000000000000000")
BDGrids.append("10000000000010001000000000001000")
SNGrids.append("00000000100010000000000010000000")
SNGrids.append("00000000100010000000000010001000")
HHGrids.append("10001000100000000000000000000000")
HHGrids.append("10001000100000001000100000000000")
BDGrids.append("10000000000000001000000010000000")
BDGrids.append("10000000000000001000000010001000")
SNGrids.append("00001000000010000000100000000000")
SNGrids.append("00001000000010000000100000001000")
HHGrids.append("00000000000000001000100010000000")
HHGrids.append("10000000000000001000100010001000")
BDGrids.append("10000000100000001000000000000000")
BDGrids.append("10000000100000001000000010000000")
SNGrids.append("00000000000000001000001000001000")
SNGrids.append("00000000100000101000001000001000")
HHGrids.append("00000000000000000010000010001000")
HHGrids.append("00001000000010000010000010001000")
BDGrids.append("10000000100000001000000010000000")
BDGrids.append("10000000100000001000000010101010")
SNGrids.append("00000000100000000000000000001000")
SNGrids.append("00000000100000000000000000001000")
HHGrids.append("10001000000000100010000000000000")
HHGrids.append("10001000000000100010001000000000")
BDGrids.append("10000010100000000000000000000000")
BDGrids.append("10000010100000101000000000000000")
SNGrids.append("00000000000010100000000000001010")
SNGrids.append("00000000000010100000100000001010")
HHGrids.append("10000010000000000000000010000000")
HHGrids.append("10000010000010000000100010000000")
BDGrids.append("10000000100000001000100000000000")
BDGrids.append("10000000100000001000100010001000")
SNGrids.append("00000000100000100010000010000000")
SNGrids.append("00000000101000100010000010000000")
HHGrids.append("00000000000010000000100000001000")
HHGrids.append("00001000000010000000100000001000")
BDGrids.append("10001000000000001000000010000000")
BDGrids.append("10001000100000001000000010000000")
SNGrids.append("00000000100010000000000000000000")
SNGrids.append("00000000100010000000000000100000")
HHGrids.append("00001000000010000010100000001000")
HHGrids.append("00001000000010001010100000001000")
BDGrids.append("10000000100000100000000010000000")
BDGrids.append("10000000100000101000000010000000")
SNGrids.append("10000000100000100000000000000000")
SNGrids.append("10000000100000100010000010000000")
HHGrids.append("00001000000010000000000000001000")
HHGrids.append("00001000000010000010001000001000")
BDGrids.append("10001000101000000000000000000000")
BDGrids.append("10001000101000001010001010000000")
SNGrids.append("00000000000010000000001000001000")
SNGrids.append("00000000000010000000001100001000")
HHGrids.append("10101111000000001010000000000000")
HHGrids.append("10101111000000001010111110000000")
BDGrids.append("00000100100000000000010000000000")
BDGrids.append("10000100100000001000010000000000")
SNGrids.append("10000000000001000000000010000000")
SNGrids.append("10000000000001001000010010000100")
HHGrids.append("10000100000001000000000000000000")
HHGrids.append("10000100100001000000000000000000")
if __name__ == "__main__":
# Reset module display state.