Skip to content

Code — master_clock

# Copyright 2022 Allen Synthesis
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from europi import *
import machine
from time import ticks_diff, ticks_ms
from europi_script import EuroPiScript
try:
import uasyncio as asyncio
except ImportError:
import asyncio
from random import randint
'''
Master Clock
author: Nik Ansell (github.com/gamecat69)
date: 2022-08-02
labels: clock, divider
A master clock and clock divider. Each output sends a +5V trigger/gate at different divisions of the master clock, or randomly if condigured with a division of zero.
Pulse width (gate/trigger duration) is configurable up to a maximum of 50% of the pulse width of output 1.
'''
'''
Version History (with lots missing from the early days!):
1.1 - Updates by @awoknak to reduce calls to oled.show() as it causes short hangs causes latency
1.2 - Updates by @nik: Fix inability to activate internal/external clock with a long-press of B1
Remove screen1 as it is not as important now an external clock is supported
Fix inability to edit pulse width
Removed some bugs in the notes above
1.3 - Updates by @nik: All divisions now output on step one and count from there. (e.g. /4 was: 4,8,12; now: 1,5,9)
Improve BPM calculations when using an external clock
'''
class MasterClockInner(EuroPiScript):
def __init__(self):
# Overclock the Pico for improved performance.
machine.freq(250_000_000)
self.step = 1
self.clockInputNum = 1
self.completedCycles = 0
self.running = True
self.resetTimeout = 3000
self.previousStepTime = 0
self.configMode = False
self.k2Unlocked = False
self.previousSelectedDivision = 0
self.previousActiveOption = ''
self.previousClockTime = 0
self.inputClockDiffs = []
self.clockSelectionScreenActive = False
# State flag to determine if UI state has changed and display should update.
self._updateUI = True
self.MIN_BPM = 20 # Successfully calibrated to >= 20 and <= 240 BPM
self.MAX_BPM = 240
self.MIN_PULSE_WIDTH = 8
self.MIN_AIN_VOLTAGE = 1.1
self.MAX_DIVISION = 128
self.MAX_PW_PERCENTAGE = 80
self.CLOCKS_PER_QUARTER_NOTE = 4
# Create list of available clock divisions, with 'r' (random) at the end
self.clockDivisions = []
for n in range(1,self.MAX_DIVISION+1):
self.clockDivisions.append(n)
self.clockDivisions.append('r')
# When enabled, set msDriftCompensation to 30
# When disabled, set msDriftCompensation to 28
self.DEBUG = False
# Default value is using an internal clock source
self.externalClockInput = False
# Set to 1 for a 4 ppqn (clock every 16th beat)
# Set to 6 for MIDI DinSync 24 (To divide to 4 ppqn)
# Set to 12 for MIDI DinSync 48 (To divide to 4 ppqn)
# Note: Currently does not work well using a Din Sync input - Perhaps the pico cannot keep up?
self.inputClockDivision = 1
# In testing a 17ms drift was found at all tempos and a 25ms drift when editing BPM/PW
# Adding this offset brings the BPM and pulse width back into a reasonable tolerance
# self.msDriftCompensationConfigMode is an additional offset if configMode causes additional slowdown
self.msDriftCompensation = 17
self.msDriftCompensationConfigMode = 0
# Vars to drive UI
self.markerPositions = [ [0, 0], [69, 0], [0, 12], [40, 12], [80, 12], [0, 24], [40, 24], [80, 24]]
self.activeOption = 1
# Get working vars
self.loadState()
self.calcSleepTime()
self.getPulseWidth()
self.tasks = []
for n in range(6):
self.tasks.append(0)
# Starts/Stops the master clock
@b1.handler_falling
def StartStop():
if ticks_diff(ticks_ms(), b1.last_pressed()) > 500 and ticks_diff(ticks_ms(), b1.last_pressed()) < 4000:
self.getClockOption()
else:
self.running = not self.running
# Cycle screen and toggle config mode
@b2.handler_falling
def cycleScreen():
if ticks_diff(ticks_ms(), b2.last_pressed()) > 500 and ticks_diff(ticks_ms(), b2.last_pressed()) < 4000:
self.configMode = not self.configMode
# This will stop the clock from running in config mode - keep here as it might be needed in the future
#self.running = False
if not self.configMode:
# config mode has just been turned off, save state and lock k2
self.saveState()
self.k2Unlocked = False
# Screen has changed
self._updateUI = True
# Trigger clock if using an external clock, or reset if not
@din.handler
def dinTrigger():
if self.externalClockInput:
# Divide input clocks by self.inputClockDivision and trigger the clock
if self.clockInputNum % self.inputClockDivision == 0:
self.clockTrigger()
if self.clockInputNum > 1: # Ignore the first entry as it has no reference
self.mSBetweenClockCycles = time.ticks_diff(ticks_ms(), self.previousClockTime)
self.inputClockDiffs.append(self.mSBetweenClockCycles)
# Only keep n values in the buffer
if len(self.inputClockDiffs) == 10:
del self.inputClockDiffs[0]
if self.clockInputNum > 3: # Only calculate is there are > 3 entries
bpm = self.calculateBpm(self.inputClockDiffs)
if bpm != self.bpm:
self.bpm = bpm
self._updateUI = True
self.previousClockTime = ticks_ms()
self.clockInputNum += 1
else:
self.step = 1
''' Ask to use internal or external clock'''
def getClockOption(self):
self.clockSelectionScreenActive = True
oled.fill(0)
oled.text("Clock Source:", 0, 0, 1)
oled.text("B1: Internal", 0, 9, 1)
oled.text("B2: External", 0, 17, 1)
self._updateUI = True
self.updateDisplay()
while True:
if b1.value() == 1:
self.externalClockInput = False
self.running = False # Need to do this to keep it running because the b1 handler will reverse the value
self.clockSelectionScreenActive = False
break
elif b2.value() == 1:
self.externalClockInput = True
self.clockSelectionScreenActive = False
break
time.sleep(0.05)
self.saveState()
self._updateUI = True
def bpmFromMs(self, ms):
return int(((1/(ms/1000))*60)/4)
def calculateBpm(self, list):
self.averageDiff = self.average(list)
return self.bpmFromMs(self.averageDiff)
def average(self, list):
return int(sum(list) / len(list))
'''main screen'''
def showScreen(self):
# k1 adjusts selected option. Remove option 1 (bpm) if using an external clock
if self.externalClockInput:
self.activeOption = k1.choice([2, 3, 4, 5, 6, 7, 8])
else:
self.activeOption = k1.choice([1, 2, 3, 4, 5, 6, 7, 8])
oled.fill(0)
if self.configMode and self.activeOption != 3:
configMarker = '|'
# if active config option changes, lock k2 and save state
if self.previousActiveOption != self.activeOption:
self.k2Unlocked = False
#self.saveState()
self._updateUI = True
# Prevent the BPM from being configured if using an external clock input
if self.activeOption == 1 and not self.externalClockInput:
# read current knob value
newBpm = self.MIN_BPM + k2.read_position(steps=(self.MAX_BPM - self.MIN_BPM + 2))
# unlock the knob if it has reached near the same value - avoids messy UX
if abs(newBpm - self.state.get('bpm')) <= 10:
self.k2Unlocked = True
# update config value if k2 is unlocked
if self.k2Unlocked:
self.bpm = newBpm
# calculate the new pulse width in milliseconds based on the new bpm
self.calcSleepTime()
self.getPulseWidth()
self._updateUI = True
elif self.activeOption == 2:
# read current knob value
newPw = k2.read_position(steps=self.MAX_PW_PERCENTAGE) + 1
# unlock the knob if it has reached near the same value - avoids messy UX
if abs(newPw - self.state.get('pulseWidthPercent')) <= 2:
self.k2Unlocked = True
# update config value if k2 is unlocked
if self.k2Unlocked and self.pulseWidthPercent != newPw:
self.pulseWidthPercent = newPw
self.calcSleepTime()
self.getPulseWidth()
self._updateUI = True
elif self.activeOption > 2:
# k2 adjusts clock division
selectedDivision = k2.choice(self.clockDivisions)
# Only adjust values if k2 has moved. This avoids a potentially annoying UX
# self.activeOption != 3 / output 1 is disabled from configuration
if self.previousSelectedDivision != selectedDivision and self.activeOption != 3:
self.outputDivisions[self.activeOption - 3] = selectedDivision
self.previousSelectedDivision = selectedDivision
self._updateUI = True
self.previousActiveOption = self.activeOption
else:
configMarker = '.'
oled.text(str(self.bpm) + ' bpm', 6, 0, 1)
oled.text(str(self.pulseWidthPercent) + ':' + str(str(self.pulseWidthMs)), 75, 0, 1)
oled.text('/' + str(self.outputDivisions[0]), 6, 12, 1)
oled.text('/' + str(self.outputDivisions[1]), 45, 12, 1)
oled.text('/' + str(self.outputDivisions[2]), 85, 12, 1)
oled.text('/' + str(self.outputDivisions[3]), 6, 24, 1)
oled.text('/' + str(self.outputDivisions[4]), 45, 24, 1)
oled.text('/' + str(self.outputDivisions[5]), 85, 24, 1)
oled.text(configMarker, self.markerPositions[self.activeOption-1][0], self.markerPositions[self.activeOption-1][1], 1)
self.updateDisplay()
''' Holds given output (cv) high for pulseWidthMs duration '''
async def outputPulse(self, cv):
cv.on()
await asyncio.sleep_ms(self.pulseWidthMs)
cv.off()
''' Given a desired BPM, calculate the time to sleep between clock pulses '''
def calcSleepTime(self):
self.mSBetweenClockCycles = int((60000 / self.bpm / self.CLOCKS_PER_QUARTER_NOTE))
def checkForAinBPM(self):
val = 100 * ain.percent()
# If there is an analogue input voltage use that for BPM. clamp ensures it is higher than MIN and lower than MAX
if val > self.MIN_AIN_VOLTAGE:
bpm = clamp(int((((self.MAX_BPM) / 100) * val) + self.MIN_BPM), self.MIN_BPM, self.MAX_BPM)
else:
# No analog input, revert to last saved state
bpm = self.state.get("bpm", 100)
if self.bpm != bpm:
self.bpm = bpm
self.calcSleepTime()
self.getPulseWidth()
self._updateUI = True
def getPulseWidth(self):
# Set max of self.MAX_PW_PERCENTAGE percent of total cycle time
self.MAX_PULSE_WIDTH = int(self.mSBetweenClockCycles * self.MAX_PW_PERCENTAGE // 100)
# Calc pulse width in milliseconds given the desired percentage. clamp ensures it is higher than MIN and lower than MAX
self.pulseWidthMs = clamp((self.mSBetweenClockCycles * (self.pulseWidthPercent)//100), self.MIN_PULSE_WIDTH, self.MAX_PULSE_WIDTH)
def computeGcd(self, x, y):
while(y):
x, y = y, x % y
return x
def lcm(self, li):
lcm = 1
for item in li:
if item != 0 and item != 'r':
lcm = lcm*item//max(self.computeGcd(lcm, item), 1)
return lcm
''' Sends output pulses at required division '''
def clockTrigger(self):
if self.DEBUG:
print('BPM: ' + str(self.bpm) + ' cycle: ' + str(self.mSBetweenClockCycles) + ' PW:' + str(self.pulseWidthMs))
for idx, output in enumerate(self.outputDivisions):
if output != 'r':
if (self.step - 1) % output == 0:
if self.tasks[idx] != 0 and not self.tasks[idx].done() and self.DEBUG:
print(f'Task: {idx} is not done')
if self.DEBUG:
print(f'calling outputPulse({idx}) on division {output}')
self.tasks[idx] = asyncio.create_task(self.outputPulse(cvs[idx]))
else:
# Fire pulses randomly
if randint(0, 1):
self.tasks[idx] = asyncio.create_task(self.outputPulse(cvs[idx]))
# advance/reset clock step, resetting at the lowest common multiple
if self.step < self.lcm(self.outputDivisions):
self.step += 1
else:
self.completedCycles += 1
self.step = 1
# Get time of last step to use in the auto reset function
self.previousStepTime = ticks_ms()
# Display may update on clock trigger.
self._updateUI = True
# Debug task output to check for overrunning tasks i.e. memory leaks
if self.DEBUG:
for i in self.tasks:
if i != 0:
print(f'[{i}] done: {str(i.done())}. state: {str(i.state)}. data: {str(i.data)}. coro: {str(i.coro)}')
else:
print(0)
def updateDisplay(self):
"""Update the display if UI state has changed."""
if self._updateUI:
oled.show()
self._updateUI = False
''' Save working vars to a save state file'''
def saveState(self):
self.state = {
"bpm": self.bpm,
"pulseWidthPercent": self.pulseWidthPercent,
"externalClockInput": self.externalClockInput,
"outputDivisions": self.outputDivisions
}
self.save_state_json(self.state)
if self.DEBUG:
print('State saved')
''' Load a previously saved state, or initialize working vars, then save'''
def loadState(self):
self.state = self.load_state_json()
self.bpm = self.state.get("bpm", 100)
self.pulseWidthPercent = self.state.get("pulseWidthPercent", 50)
self.externalClockInput = self.state.get("externalClockInput", False)
self.outputDivisions = self.state.get("outputDivisions", [1,2,4,8,16,32])
self.saveState()
async def main(self):
while True:
if not self.clockSelectionScreenActive:
self.showScreen()
# Auto reset function after resetTimeout
if self.step != 0 and ticks_diff(ticks_ms(), self.previousStepTime) > self.resetTimeout:
self.step = 1
self.completedCycles = 0
if not self.configMode and not self.externalClockInput:
self.checkForAinBPM()
if self.running and not self.externalClockInput:
self.clockTrigger()
self.calcSleepTime()
if self.configMode:
await asyncio.sleep_ms(int(self.mSBetweenClockCycles - self.msDriftCompensation - self.msDriftCompensationConfigMode))
else:
await asyncio.sleep_ms(int(self.mSBetweenClockCycles - self.msDriftCompensation))
else:
# need to add this otherwise the async tasks never start
await asyncio.sleep_ms(0)
class MasterClock(EuroPiScript):
def __init__(self):
pass
def main(self):
mc = MasterClockInner()
el = asyncio.get_event_loop()
el.create_task(mc.main())
el.run_forever()
if __name__ == '__main__':
m = MasterClock()
m.main()